217 research outputs found

    What Causes Partial F1 Hybrid Viability? Incomplete Penetrance versus Genetic Variation

    Get PDF
    Hernán López-Fernández is with Texas A&M University, Daniel I. Bolnick is with UT Austin.Background -- Interspecific hybrid crosses often produce offspring with reduced but non-zero survivorship. In this paper we ask why such partial inviability occurs. This partial inviability could arise from incomplete penetrance of lethal Dobzhansky-Muller incompatibilities (DMIs) shared by all members of a hybrid cross. Alternatively, siblings may differ with respect to the presence or number of DMIs, leading to genotype-dependent variation in viability and hence non-Mendelian segregation of parental alleles in surviving F1 hybrids. Methodology/Principal Findings -- We used amplified fragment length polymorphisms (AFLPs) to test for segregation distortion in one hybrid cross between green and longear sunfish (Lepomis cyanellus and L. megalotis). Hybrids showed partial viability, and twice as much segregation distortion (36.8%) of AFLPs as an intraspecific control cross (18.8%). Incomplete penetrance of DMIs, which should cause genotype-independent mortality, is insufficient to explain the observed segregation distortion. Conclusions/Significance -- We conclude that F1 hybrid sunfish are polymorphic for DMIs, either due to sex-linked DMI loci (causing Haldane's Rule), or polymorphic autosomal DMI loci. Because few AFLP markers were sex-linked (2%), the most parsimonious conclusion is that parents may have been heterozygous for loci causing hybrid inviability.The University of Texas at Austin funded DIB as assistant professor, HLF as a postdoctoral researcher at DIB's lab, and all experimental work. The National Science Foundation grant DEB 0516831 supported HLF as a postdoctoral researcher at Texas A&M University during the writing phase of this project.Biological Sciences, School o

    Assortative Mating In Animals

    Get PDF
    Assortative mating occurs when there is a correlation (positive or negative) between male and female phenotypes or genotypes across mated pairs. To determine the typical strength and direction of assortative mating in animals, we carried out a meta-analysis of published measures of assortative mating for a variety of phenotypic and genotypic traits in a diverse set of animal taxa. We focused on the strength of assortment within populations, excluding reproductively isolated populations and species. We collected 1,116 published correlations between mated pairs from 254 species (360 unique species-trait combinations) in five phyla. The mean correlation between mates was 0.28, showing an overall tendency toward positive assortative mating within populations. Although 19% of the correlations were negative, simulations suggest that these could represent type I error and that negative assortative mating may be rare. We also find significant differences in the strength of assortment among major taxonomic groups and among trait categories. We discuss various possible reasons for the evolution of assortative mating and its implications for speciation.Integrative Biolog

    Measuring Individual-Level Resource Specialization

    Get PDF
    Many apparently generalized species are in fact composed of individual specialists that use a small subset of the population’s resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the population’s total niche width into within- and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet–morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization

    Scale‐dependent effects of host patch traits on species composition in a stickleback parasite metacommunity

    Get PDF
    A core goal of ecology is to understand the abiotic and biotic variables that regulate species distributions and community composition. A major obstacle is that the rules governing species distributions can change with spatial scale. Here, we illustrate this point using data from a spatially nested metacommunity of parasites infecting a metapopulation of threespine stickleback fish from 34 lakes on Vancouver Island, British Columbia. Like most parasite metacommunities, the composition of stickleback parasites differs among host individuals within each host population, and differs between host populations. The distribution of each parasite taxon depends, to varying degrees, on individual host traits (e.g., mass, diet) and on host‐population characteristics (e.g., lake size, mean host mass, mean diet). However, in most cases in this data set, a given parasite was regulated by different factors at the host‐individual and host‐population scales, leading to scale‐dependent patterns of parasite‐species co‐occurrence

    Reverse evolution of armor plates in the threespine stickleback.

    Get PDF
    Faced with sudden environmental changes, animals must either adapt to novel environments or go extinct. Thus, study of the mechanisms underlying rapid adaptation is crucial not only for the understanding of natural evolutionary processes but also for the understanding of human-induced evolutionary change, which is an increasingly important problem [1-8]. In the present study, we demonstrate that the frequency of completely plated threespine stickleback fish (Gasterosteus aculeatus) has increased in an urban freshwater lake (Lake Washington, Seattle, Washington) within the last 40 years. This is a dramatic example of "reverse evolution,"[9] because the general evolutionary trajectory is toward armor-plate reduction in freshwater sticklebacks [10]. On the basis of our genetic studies and simulations, we propose that the most likely cause of reverse evolution is increased selection for the completely plated morph, which we suggest could result from higher levels of trout predation after a sudden increase in water transparency during the early 1970s. Rapid evolution was facilitated by the existence of standing allelic variation in Ectodysplasin (Eda), the gene that underlies the major plate-morph locus [11]. The Lake Washington stickleback thus provides a novel example of reverse evolution, which is probably caused by a change in allele frequency at the major plate locus in response to a changing predation regime
    corecore